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Abstract: Utilization of controllable ferroelectric and ferromagnetic layers coat-
ing a conducting object to provide an attenuation capability against electro-
magnetic interrogation is discussed. The problem is formulated as a differential
game and/or a robust optimization. The scattered field due to interrogation
can be attenuated with the assumption of an uncertainty in the interrogation
wave numbers. The controllable layer composed of ferromagnetic and ferroelec-
tric materials [9, 10] is incorporated in a mathematical formulation based on
the time-harmonic Maxwell equation. Fresnel’s law for the reflectance index is
extended to the electromagnetic propagation in anisotropic composite layers of
ferromagnetic and electronic devices and used to demonstrate feasibility of con-
trol of reflections. Our methodology is also tested for a non-planar geometry of
the conducting object (an NACA airfoil) in which we report our findings in the
form of reduced radar cross sections (RCS).

1 Introduction

In this paper we discuss an optimal attenuation problem, i.e., we attempt to maximize

attenuation capabilities of interrogating signals by utilizing a controllable dielectric layer

on the surface of a conducting object. The objective of the interrogator is to detect and

identify the location and shape of the conducting object based on the scattered field from an

interrogation incident field, i.e., the solution of an inverse scattering problems [2, 6]. In the

plane wave case the incident electromagnetic (EM) field has the form ( ~E(i), ~H(i)) ei~k·~x and the
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interrogator has control over the wave numbers ~k. The attenuation problem is to minimize or

diminish the detection capability of interrogation by either grating [13] or fabrications on the

object surface. In this paper we consider the utilization of thin controllable dielectric surface

layers on the object as a method for achieving the attenuation capability. Here “controllable”

means that we have the capability of adjusting the material properties of the surface layers

parametrically and/or dynamically. The technical ideas developed here also have potential

to aid in the design of medical shields employed to protect parts of an irradiated target or

to focus radiation to pinpoint specific regions of the target.

In these initial investigations, we investigate an “active” design case in which one determines

values of the dielectric permittivity and magnetic permeability of the controllable layer in

order to attenuate reflections. From a control theoretic viewpoint this is a “passive” or

open loop control strategy. But our efforts here lay the foundations for “active” or closed

loop control strategies in which one combines controllable layer dynamics with a sensor for

incoming interrogating signals to develop real time feedback controls for adaptive choice of

the permittivity and permeability of the controllable layer.

To investigate feasibility, we first formulate the problem as a differential game. For example,

we assume the time-harmonic incident EM plane wave is impinging on the surface at z = 0

and we control the effective dielectric constant ε of the surface layer on top of the conducting

material. The scattered field due to the interrogation can be evaluated based on the time-

harmonic Maxwell equations [6]. In the case when the dielectric constant is homogeneous in

the horizontal directions (planar geometry) the reflectance index R = R(~k, ε) is determined

by Fresnel’s law (see [14] and Section 4). Thus, the problem of nullifying the scattered field

can be cast as the minimization of the scattering EM wave in terms of |R|2, i.e.,

min
ε∈Q

max
~k∈K

|R|2 (1.1)

where Q is a set of admissible dielectric constants and K is a set of possible interrogation

wave numbers. In order to determine the admissible set Q we must describe controllable
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mechanisms of the dielectric layer. Thus, the problem of nullifying the scattered field can

be formulated as min-max problem of minimizing the largest reflectance by interrogations

over ~k ∈ K, over all possible designs (ε ∈ Q in this case). This game theoretic formulation is

used in many other design problems. It does not assume any information on the uncertainty

of interrogations and thus it may lead to a conservative design. An alternative formulation

can be given in a more robust form, i.e.,

min
ε∈Q

∫

K

|R|2 dK(~k) (1.2)

where K is a probability distribution function on the wave numbers ~k. This formulation

then needs information about the distribution function K of the interrogating plane wave.

As demonstrated in Section 2, better knowledge of the distribution function greatly improves

the performance of minimizing the scattered field.

After demonstrating attenuation capabilities, we turn to the general case of a non-planar

conducting medium with a controllable coating layer. The far field pattern F (θ) of the

scattered field (see, [6] and Section 5) is then a function of the wave number ~k of the

incident plane wave and the material properties (ε, µ) of the controllable layer, i.e.,

F (θ) = U(~k, (ε, µ); θ), 0 ≤ θ ≤ 2π. (1.3)

One can select the performance index J(~k, (ε, µ)) = Φ(F ) to perform specific alternations

of the scattered field, which of course depend on the inverse techniques employed by the

interrogator. Here Φ(F ) is some performance index for the far-field pattern F (θ). We

investigate optimal radar cross sections (RCS) for one class of such problems.

We note that the existence of solutions to a general min-max problem is guaranteed under the

condition that given ε ∈ Q the value function V (ε) = sup
~k∈K

J(~k, ε) is lower semi-continuous,

which is typically satisfied under very mild conditions (e.g, see [12]) when Q is compact.

The saddle point property of a solution pair (~k0, ε0):

J(~k, ε0) ≤ J(~k0, ε0) ≤ J(~k0, ε) for all ε ∈ Q, ~k ∈ K (1.4)
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holds locally if the Hessian of J(~k, ε) is hyperbolic at (~k0, ε0). The existence of solutions to

the robust formulation then simply follows from the continuity of J(~k, ε0) with respect to

(~k, ε) ∈ K ×Q.

A brief outline of our presentation here is as follows. In Section 2 we consider the exact

problem for the planar geometry and present example numerical calculations for optimal

design of the dielectric layer based on a robust formulation and demonstrate the feasibility

of this approach and the effectiveness of the design. In Section 3 we discuss a controllable

layer composed of ferromagnetic and ferroelectric materials as proposed by How and Vittoria

[9, 10]. This composite model is designed so that a control mechanism for the material

properties of the layers can be achieved in both a parametric and a dynamic manner. In

Section 4 we mathematically formulate the forward problem for the controllable composite

layers, including the tensor permeability in the ferrite layer, by calculating the scattered field

R as a function of the interrogating wave and the near surface composition. We consider the

time-harmonic case with plane wave interrogations of the planar geometry (i.e., the composite

layers are homogeneous in (x, y)). In this case we construct the plane wave solution and an

analytic expression for the reflectance index R. Another important feature of our formulation

is the possible identification of the interrogating wave in terms of its distribution K. Since

the plane wave calculation also yields surface currents as an explicit function of the incident

interrogations, the surface current measurements can, in principle, be used to identify the

distribution K of the interrogations ~k. In Sections 5-7 we present results for our formulation

when applied to a non-planar geometry by considering the NACA0012 airfoil [15]. In general

(and in particular in this case) we do not have an analytic expression for the far field pattern

F and thus we use a numerical computation of the scattered field. In this case, our numerical

computations for the scattered field F are implemented using the finite-element method (in

Section 6). Our numerical findings are presented for an optimal homogeneous coating layer.
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2 Feasibility study

In this section we first demonstrate the feasibility of our approach. We consider an incident

parallel-polarized (TEx) plane wave ~H = (H(i)
x , 0, 0)ei~k·~x impinging on the interface of the

first and second layers at z = 0, as depicted in Figure 1. The interface between the second

and third layers is located at z = −d, where the third layer is a perfect conductor. We control

the effective dielectric constant ε(2) of the second layer coating the conducting material. By

Fresnel’s law (see [3, 14] and the discussion in Section 4) we have that the reflection coefficient

or reflectance index is given by

R =

ε(2)k
(1)
z − ε(1)k

(2)
z

ε(2)k
(1)
z + ε(1)k

(2)
z

+ e−2ik(2)
z d

1 +
ε(2)k

(1)
z − ε(1)k

(2)
z

ε(2)k
(1)
z + ε(1)k

(2)
z

e−2ik(2)
z d

, (2.1)

where

k(1)
z =

2π

λ

√
1− sin2 ϕ0

k(2)
z =

2π

λ

√
ε(2) − ε(1) sin2 ϕ0.

(2.2)

Here ϕ0 is the incident angle with respect to the normal to the surface (tan ϕ0 =
k

(1)
y

k
(1)
z

, k(1)
x =

0) and λ is the wavelength of the incident wave. We note from (2.1) that R depends on the

ratio ε(2)/ε(1) and hence without loss of generality we may normalize the parameters so that

ε(1) = 1. The reflectance index R is a function of (λ, ϕ0), the normalized dielectric constant

ε(2), and the thickness d of the surface layer. We assume that d is positive and fixed. We

parameterize the incident wave in terms of (λ, ϕ0).

In Figures 2 and 3 we depict the robustness of the optimal solution by plotting the reflectance

intensity |R| as a function of the incident angle and the normalized thickness/wave length

ratio, defined as a =
d

λ
. In Figure 2 we assume that the uncertainty in wave numbers is only

due to uncertainty in the incident angle ϕ0, which is uniformly distributed on the interval

[36, 54] degrees, and graph the intensity |R| corresponding to the optimal dielectric constant
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Figure 1: Schematic representation of the reflection of a plane wave incident with angle φ0 on a planar
three layer stack. The top two layers are dielectric media. The third layer is a perfect conductor.

ε(2) = 1.008 + .693i as a function of the incident angle. The integration of |R|2 over ϕ0 is

performed using Simpson’s rule. The intensity of the reflection is well attenuated over the

uncertainty interval [36, 54] degrees.
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Optimal 1.008+0.693i for a=0.5 and on [36 54] degree

Figure 2: The reflected intensity |R| as a function of the incident angle
ϕ0. The uncertainty interval is [36, 54] degrees.

Next, we assume that there is uncertainty in both the incident angle ϕ0 and the normalized

thickness/wave length ratio a, which are uniformly distributed on a rectangle [36, 54] ×
[0.3, 0.7]. In Figure 3 we plot the intensity |R| corresponding to the optimal dielectric

constant ε(2) = 1.4309 + 1.0724i for several sampled incident points in the frequency. A

6



reasonable attenuation over the uncertainty box is obtained in this example. It is clear

that the performance depends on the quality of the information on the distribution of the

interrogating wave, as demonstrated by the better attenuation results in the first case (Fig.

2) than in the second case (Fig. 3).
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Figure 3: The reflected intensity |R| as a function of the incident angle
ϕ0 and the normalized thickness/wave length ratio a. The uncertainty
box is [36, 54]× [0.3, 0.7]
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3 Controllable sublayers composed of ferromagnetic and

ferroelectric materials

In this section we describe an experimental device that can be used to control the dielectric

permittivity (and magnetic permeability) in a coating layer as discussed in the previous

sections. In Figure 4 we present a schematic of the configuration of an active reflecting device

proposed and investigated experimentally by How and Vittoria in [9, 10]. The reflector

contains a ferrite layer and a ferroelectric layer as constituents. The permanent magnet

provides a common magnetic bias so that the ferromagnetic resonance (FMR) condition can

be readily achieved and thereby facilitate sensitive magnetic tuning by the local Helmholtz

coils. The dielectric properties of the ferroelectric layer are controlled through the ground

plane bias field. The purpose of this reflector design is to provide phase and impedance

control of the composite layers so that nullification and alteration of the scattered wave can

be achieved in the response to an incident interrogating EM wave. The integrated circuits

are designed so that the tuning sensitivity of the device is enhanced. The key element of the

device is that the material properties µ(H) and ε(E) of the composite layers are controllable

in terms of the magnetic mean in the ferrite layer and the electric mean in the ferroelectric

layer, and thus can support agile frequency attenuation.

The most important device characteristic of the ferrite in our study [9, 10] is that the

magnetic permeability µ̄ is a tensor, so that, due to the gyromagnetic effect, EM propagation

in the ferrite is anisotropic in the presence of a dc-bias magnetic field [11, 19]. For a ferrite

magnetized in the y direction with damping and no demagnetization, the permeability tensor

is given by [16]

µ̄ =




µ 0 −iκ

0 µ0 0

iκ 0 µ




where

µ = µ0(1 +
ω̄0ωm

ω̄2
0 − ω2

), κ = µ0
ωωm

ω̄2
0 − ω2

ωm = 4πγ Mz, ω̄0 = ω0 + i/τ, ω0 = γ H0,

(3.1)

ω0 is the precession frequency, H0 is the impressed d.c. magnetic field, γ is the gyromagnetic

8



ratio, Mz is the saturation magnetization, and τ is the relaxation time.

The ferrite device is most useful if it operates near the FMR frequency ω0 so that the rapid

change in magnetic permeability can be effectively utilized, either to obtain frequency-tuning

capability or to remove the degeneracy between modes [9, 10].

−+ −+ −+ −+ −+ −+

PERMANENT MAGNET

FERROELECTRIC

FERRITE

DIELECTRIC
y

z

H
0

HELMHOLTZ COILS GROUND PLANE

α

Figure 4: Composite sublayers comprising an active reflector device.

4 Plane wave solution

We next discuss a plane wave solution as it interacts with a ferrite layer. Due to the tensor

magnetic permeability µ̄, the electric and magnetic modes are coupled in the ferrite layer. In

this section we present the detailed calculations for constructing the fundamental solution

in the ferrite layer. A similar calculation can be carried out for the ferroelectric layer.
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The time-harmonic Maxwell’s equations are written as

∇×H = iωεE
∇× E = −iωµ̄H

∇ · (µ̄H) = 0
∇ · E = 0.

(4.1)

For the ferrite layer the permeability µ̄ is the tensor defined by (3.1), and thus the first three

equations in (4.1) can be written as




∂

∂y
Hz − ∂

∂z
Hy

∂

∂z
Hx − ∂

∂x
Hz

∂

∂x
Hy − ∂

∂y
Hx




= iωε




Ex

Ey

Ez


 , (4.2)




∂

∂y
Ez − ∂

∂z
Ey

∂

∂z
Ex − ∂

∂x
Ez

∂

∂x
Ey − ∂

∂y
Ex




= −iω




µHx − iκHz

µ0Hy

iκHx + µHz,


 , (4.3)

and

−µ (
∂

∂x
Hx +

∂

∂z
Hz) = iκ (

∂

∂z
Hx − ∂

∂x
Hz) + µ0

∂

∂y
Hy. (4.4)

Taking the cross-product of (4.2) and using (4.3), we obtain (y-component)

iωµ0 Hy =
1

iωε

(
∂2

∂x2
Hy +

∂2

∂z2
Hy − ∂

∂y

(
∂

∂x
Hx +

∂

∂z
Hz

))
. (4.5)

Using the y-component of (4.2),

iωεEy =
∂

∂z
Hx − ∂

∂x
Hz, (4.6)

in (4.4) and substituting into (4.5), we have

∂2

∂x2
Hy +

∂2

∂z2
Hy +

µ0

µ

∂2

∂y2
Hy + ω2 µ0εHy =

ωκε

µ

∂

∂y
Ey. (4.7)
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The components of (4.3) can be manipulated to yield the following equations

µ (
∂

∂y
Ez − ∂

∂z
Ey) + iκ (

∂

∂x
Ey − ∂

∂y
Ex) = −iω(µ2 − κ2)Hx

∂

∂z
Ex − ∂

∂x
Ez = −iωµ0 Hy

−iκ (
∂

∂y
Ez − ∂

∂z
Ey) + µ (

∂

∂x
Ey − ∂

∂y
Ex) = −iω(µ2 − κ2) Hz.

(4.8)

Using the y-component of (4.2) and the first and last equations of (4.8), one can obtain

∂

∂z

(
µ (

∂

∂y
Ez − ∂

∂z
Ey) + iκ (

∂

∂x
Ey − ∂

∂y
Ex)

)

− ∂

∂x

(
−iκ (

∂

∂y
Ez − ∂

∂z
Ey) + µ (

∂

∂x
Ey − ∂

∂y
Ex)

)
= ω2ε (µ2 − κ2) Ey.

This can be rearranged to obtain

−µ

(
∂2

∂z2
Ey +

∂2

∂x2
Ey

)

+
∂

∂y

(
µ (

∂

∂z
Ez +

∂

∂x
Ex)− iκ (

∂

∂z
Ex − ∂

∂x
Ez)

)
= ω2ε (µ2 − κ2) Ey.

Using this result with the y-component of (4.8) and the fourth equation of (4.1), we have

∂2

∂x2
Ey +

∂2

∂y2
Ey +

∂2

∂z2
Ey +

ω2ε (µ2 − κ2)

µ
Ey = −ωµ0κ

µ

∂

∂y
Hy. (4.9)

From (4.2)

iωε




Ex

Ez


 =




∂

∂y
Hz − ∂

∂z
Hy

∂

∂x
Hy − ∂

∂y
Hx


 .

If we define

E± = Ez ± i Ex, H± = Hz ± iHx,

then it follows that

iωε




E+

E−


 =




−i∇+Hy + i
∂

∂y
H+

i∇−Hy − i
∂

∂y
H−


 , (4.10)

11



where

∇±φ =
∂

∂z
φ± i

∂

∂x
φ.

From (4.3)

−iω




µ Hx − iκ Hz

µ Hz + iκHx


 =




∂

∂y
Ez − ∂

∂z
Ey

∂

∂x
Ey − ∂

∂y
Ex


 ,

and thus

−iω




(µ + κ) H+

(µ− κ) H−


 =




−i∇+Ey + i
∂

∂y
E+

i∇−Ey − i
∂

∂y
E−


 . (4.11)

From (4.10)–(4.11)

−ω2ε (µ± κ) H± − ∂2

∂y2
H± ± ωε∇±Ey +

∂

∂y
∇±Hy = 0,

and we have

−ω2ε (µ± κ) E± − ∂2

∂y2
E± ∓ ω(µ± κ)∇±Hy +

∂

∂y
∇±Ey = 0.

Let Ê and Ĥ be the (partial) Fourier transform (in (x, y)) of E and H, i.e.,

Ê(kx, ky, z) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
E(x, y, z)e−ikx x−iky y dxdy.

Then (4.9) and (4.7) can be written, respectively as

∂2

∂z2
Êy − (k2

x + k2
y − ω2ε

µ2 − κ2

µ
) Êy = −iωµ0ky

κ

µ
Ĥy

∂2

∂z2
Ĥy − (k2

x +
µ0

µ
k2

y − ω2µ0ε) Ĥy = iωεky
κ

µ
Êy

(4.12)

and (4.10)–(4.11) as

Ê± =
−iky ∇±Êy ± ω(µ± κ)∇±Ĥy

k2
y − ω2ε(µ± κ)

Ĥ± =
−iky ∇±Ĥy ∓ ωε∇±Êy

k2
y − ω2ε(µ± κ)

, (4.13)
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where

∇± =
∂

∂z
∓ kx.

Thus the electric and magnetic modes are coupled by (4.12). Next we find the fundamental

solution within the ferrite layer. We look for a solution satisfying

Êy = iη Ĥy. (4.14)

Then η must satisfy

k2
y − ω2ε

µ2 − κ2

µ
− ωµ0ky

κ

µη
=

µ0

µ
k2

y − ω2µ0ε− ωεky
κ

µ
η. (4.15)

Equation (4.15) has two roots, which we designate as η+ and η−. Then Ĥy must satisfy

∂2

∂z2
Ĥy − (k2

x +
µ0

µ
k2

y − ω2µ0ε− η± ωεky
κ

µ
) Ĥy = 0.

Thus, Êy and Ĥy can be written in the form

Êy = iη+ (A1 eik+z + B1 e−ik+z) + iη− (A2 eik−z + B2 e−ik−z)

Ĥy = A1 eik+z + B1 e−ik+z + A2 eik−z + B2 e−ik−z,

(4.16)

k± =

√
ω2µ0ε + η±ωεky

κ

µ
− k2

x −
µ0

µ
k2

y .

Formulae (4.12)–(4.16) are given in [11, 19] without detailed derivations. These results allow

us to construct the plane wave solution in a ferrite layer.

Moreover, in a general dielectric (including ambient) medium the fundamental solutions (in

the partial Fourier domain formulation) are given by

(Ēx, 0, 0)eikzz, (0,− kz

ωµ
Ēx,

ky

ωµ
Ēx)e

ikzz (4.17)

for a perpendicular polarized (TMx mode) incident wave and

(0,
kz

ωε
H̄x,− ky

ωε
H̄x)e

ikzz, (H̄x, 0, 0)eikzz. (4.18)
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for a parallel polarized (TEx mode) incident wave, where Ēx and H̄x are constants, when

kx = 0 and ky are fixed.

Now we consider the case when a ferrite layer with thickness d on a perfectly conducting is

impinged upon by the parallel polarized incident wave (4.17) ~H(i)(x, y, z) = (H(i)
x , 0, 0)ei~k·~x

(its partial Fourier transform is (H(i)
x , 0, 0)eikzz ) with kx = 0 and ky fixed. The transmitted

wave in the ferrite layer is generally not TEx-mode alone and thus has a nontrivial Ê(t)
x .

Hence, for a given incident wave, the reflected wave ( ~E(r), ~H(r))e−ikzz in the ambient layer

is a linear combination of the two fundamental solutions of the form (4.17)–(4.18) (with

kz = −kz) and the constant weights (E(r)
x , H(r)

x ) for the reflected wave can be determined by

the system of equations 



H(i)
x + H(r)

x = Ĥ(t)
x (0)

kz

ωµ
(0 + E(r)

x ) = Ĥ(t)
y (0)

0 + E(r)
x = Ê(t)

x (0)

kz

ωε
(H(i)

x −H(r)
x ) = Ê(t)

y (0)

Ê(t)
x (−d) = Ê(t)

y (−d) = 0,

(4.19)

for (A1, B1, A2, B2, E
(r)
x , H(r)

x ). The first two equations impose the continuity of H compo-

nents, the next two equations impose the continuity of E components at z = 0 (the interface

between the ambient and the ferrite layer), and the last equation enforces the perfectly con-

ducting boundary conditions at z = −d. Moreover, the induced surface current ~J due to the

incident wave is given by

~J = (Ĥy(−d),−Ĥx(−d), 0) = ~n× ~̂
H.

This construction procedure can be readily extended to the case of the composite of sublayers.
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4.1 Dielectric case (Fresnel’s Law)

In this section we consider the dielectric layer (µ = µ0, κ = 0 and thus η = 0) with

thickness d on the perfectly conducting medium and show that equation (4.19) reduces to

usual Fresnel’s law for the parallel polarized (TEx) incident wave. In this case we have

E(r)
x = E(t)

x = H(r)
y = H(t)

y = 0 and

k(1)
z =

√
ω2µ0ε(1) − k2

y

k+ = k− = k(2)
z =

√
ω2µ0ε(2) − k2

y.

In the dielectric layer we have (in the partial Fourier domain)

Ĥ(t)
x = H

(t)
+ eik

(2)
z z + H

(t)
− e−ik

(2)
z z

Ê(t)
y =

k
(2)
z

ωε(2)
(H

(t)
+ eik

(2)
z z −H

(t)
− e−ik

(2)
z z).

where H
(t)
± are constants. Thus, (4.19) becomes





H(i)
x + H(r)

x = H
(t)
+ + H

(t)
−

k
(1)
z

ωε(1)
(H(i)

x −H(r)
x ) =

k
(2)
z

ωε(2)
H

(t)
+ − k

(2)
z

ωε(2)
H

(t)
−

e−ik
(2)
z d H

(t)
+ − eik

(2)
z d H

(t)
− = 0

Hence we obtain Fresnel’s law

H(r)
x =

ε(2)k
(1)
z − ε(1)k

(2)
z

ε(2)k
(1)
z + ε(1)k

(2)
z

+ e−2ik
(2)
z d

1 +
ε(2)k

(1)
z − ε(1)k

(2)
z

ε(2)k
(1)
z + ε(1)k

(2)
z

e−2ik
(2)
z d

H(i)
x .

4.2 Numerical tests

In this section we demonstrate the feasibility of using the controllable property of the ferrite

layer to attenuate reflections. We select ε0 = 1, µ0 = 10 and d = .5 (normalized). The
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magnetic permeability µ̄ of the ferrite layer is parameterized by

µ = µ0 (0.3 +
β

100
), κ = µ0(−0.01 +

β

100
), for 1 ≤ β ≤ 100

where a parameter β plays a role of tuning the frequency ωm in (3.1). In Figure 5 we depict

|(E(r)
x , H(r)

x )| as a function of β for the three different incident angles φ0 = 40o, 45o, 50o.

This figure establishes the attenuation capability of the ferrite layer that can be achieved

by tuning the permeability. In Figure 6 we graph the real and imaginary parts of H(r)
x as

a function of the frequency for the incident angle φ = 45o. This reveals the phase shift

capability of the controlled ferrite layer.
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Figure 5: Attenuation Capability

5 Optimization of material parameters of a coated air-

foil

Having discussed the feasibility of tuning dielectric and magnetic properties of a coating on

a perfect conductor in the previous sections, we turn in the next several sections to field
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calculations for a coated airfoil and demonstrate our ability to significantly affect the RCS

by manipulation of the parameters ε and µ in the coating.

5.1 Time-harmonic Maxwell’s equation for the transverse mag-
netic mode

We consider the scattering of a perfectly conducting airfoil coated by a layer of constant

thickness. The interrogating electromagnetic incident wave is assumed to be a time-harmonic

and transverse magnetic, more precisely TMx mode. Thus, the time-harmonic electric and

magnetic fields have the form

E =




Ex

0
0


 and H = − i

ωµ




0
∂

∂z
Ex

− ∂

∂y
Ex


 , (5.1)

where Ex is a function of y and z. We denote the airfoil by Ω and the coating layer by Ω1;

see Figure 7.
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¡µE(i)
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α
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¡ª

Fα(α + π)

α+π

Figure 7: The computational domain, an interrogating wave E(i)
x with an interrogation angle

α, and an far field pattern Fα(α + π) of a scattered field E(r)
x to the direction α + π.

We decompose the total electric field Ex to the incident field E(i)
x and the scattered field

E(r)
x , that is, Ex = E(r)

x + E(i)
x . Outside the coating layer the interrogating plane wave with

an interrogation angle α = (π/2− φ0) is given by E(i)
x (y, z) = ei(kyy+kzz), where ky = k cos α,

kz = k sin α, k = 2π/λ = ω/c0 is the wave number, and λ is the wavelength. We do not

have an explicit formula for the incident field E(i)
x inside the coating layer Ω1. However our

following formulation is constructed in such a way that it gives the same total field Ex in

R2 \ Ω̄ and the same scattered field E(r)
x in R2 \ (Ω̄1 ∪ Ω̄) regardless how the incident field

E(i)
x is chosen in the coating layer Ω1. Thus, we can use the same expression ei(kyy+kzz) for

the incident field also in the coating layer.

By eliminating the magnetic field from Maxwell’s equation and substituting the time-harmonic

electric field E of the form given in (5.1) to the resulting equation, we obtain the following

Helmholtz equation

∇ ·
(

1

µ
∇E(r)

x

)
+ εω2E(r)

x = −∇ ·
(

1

µ
∇E(i)

x

)
− εω2E(i)

x in R2 \ Ω̄

Ex = E(r)
x + E(i)

x = 0 on ∂Ω

[
1

µ

∂Ex

∂n

]
= [Ex] = 0 on ∂Ω1 \ ∂Ω

lim
r→∞

√
r

(
∂E

(r)
x

∂r
− ikE(r)

x

)
= 0,

(5.2)

where [ · ] denotes the jump and n is a normal direction of the surface ∂Ω1 \∂Ω. The far field
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behavior of the scattered field described by Maxwell’s equation satisfies the Silver-Müller

radiation condition [6]. For the time-harmonic TMx mode this condition reduces to be the

Sommerfeld radiation condition given by the limit in (5.2). The material permittivity ε and

permeability µ are piecewise constant functions defined by

ε(y, z) =

{
εrε0, (y, z) ∈ Ω̄1

ε0, otherwise
and µ(y, z) =

{
µrµ0, (y, z) ∈ Ω̄1

µ0, otherwise.

5.2 Far field pattern

The far field pattern F : [0, 2π] → C describes the intensity and phase of the scattered field

E(r)
x far away from the scatterer ([5], p.340). It can be defined as

Fα(θ) = lim
r→∞

(√
8πkr e−i(kr+π/4) E(r)

x (r cos θ, r sin θ)
)

, (5.3)

where we have added the subscript α to denote the interrogation angle.

5.3 Backscatter reduction

In this optimization problem, we want to find constant material parameters εr and µr so

that the intensity of the backscattered wave is minimized over a given sector [α0, α1]. The

objective function is the integral

J(εr, µr) =

∫ α1

α0

|Fα(α + π)|2 dα. (5.4)

The minimization problem is given by

min
(εr,µr)∈Q

J(εr, µr), (5.5)

where Q is the set of admissible material parameters.

This objective function corresponds to a situation where the same radar is illuminating and

detecting the scattered wave. The interrogation angle of the interrogating wave varies within
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the interval [α0, α1] and the formulation (5.4) corresponds to an assumption of a uniform

distribution on possible angles of interrogation.

We use the NAG Fortran library’s [17] E04UCF implementation of a sequential quadratic

programming (SQP) method. This is a gradient based optimization method which approxi-

mates the gradient using finite differences.

6 Approximation

6.1 Truncation of domain and variational formulation

For the discretization of (5.2), we restrict the problem to a rectangular domain Π and

impose a second-order absorbing boundary condition [1] on the artificial boundary ∂Π to

approximate the the Sommerfeld radiation condition. Now the scattered field E(r)
x satisfies

the following equations

∇ ·
(

1

µ
∇E(r)

x

)
+ εω2E(r)

x = −∇ ·
(

1

µ
∇E(i)

x

)
− εω2E(i)

x in Π \ Ω̄

E(r)
x = −E(i)

x on ∂Ω

[
1

µ

∂Ex

∂n

]
= [Ex] = 0 on ∂Ω1 \ ∂Ω

∂E
(r)
x

∂n
− ikE(r)

x − i

2k

∂2E
(r)
x

∂s2
= 0 on ∂Π

∂E
(r)
x

∂s
− ik

3

2
E(r)

x = 0 at C,

(6.1)

where n and s denote the normal and tangential directions of the boundary ∂Π, respectively,

and C is the set of the corner points of Π.

The variational formulation of (6.1) is :
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Find E ∈ {v ∈ H1(Π \ Ω̄) | v|∂Π ∈ H1(∂Π), v = −E(i)
x on ∂Ω} such that

∫

Π\Ω̄

(
1

µ
∇E(r)

x · ∇v − εω2E(r)
x v

)
dξ +

i

kµ0

∫

∂Π

(
1

2

∂E
(r)
x

∂s

∂v

∂s
− k2E(r)

x v

)
dσ

+
3

4µ0

∑

(y,z)∈C

E(r)
x (y, z)v(y, z) = −

∫

Π\Ω̄

(
1

µ
∇E(i)

x · ∇v − εω2E(i)
x v

)
dξ

(6.2)

for all v ∈ {v ∈ H1(Π \ Ω̄) | v|∂Π ∈ H1(∂Π), v = 0 on ∂Ω}.

6.2 Finite element approximation

The finite element approximation is implemented using linear elements. The mesh is con-

structed from two uniform triangular meshes. The finer mesh is for the coating layer and,

the coarser is for the exterior domain outside the coating. The mesh step sizes are chosen in

such a way that the number of nodes per wavelength is approximately the same in the air

and coating. The finer mesh is locally fitted to the surfaces of the obstacle and the coating

layer. The local fitting is done using the algorithm [4] with slight modifications. Between

the meshes, there is a layer, which fits the meshes together in a conforming way. An example

of a part of mesh is shown in Figure 8.

Figure 8: A magnified view of the mesh for a coated NACA0012 airfoil.

After the discretization of the variational formulation (6.2), we obtain a system of linear
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equations

Ax = b, (6.3)

where the matrix A is a symmetric non-Hermitian complex matrix. The vector x contains

the nodal values of the scattered field E(r)
x and the vector b corresponds the right-hand terms

in (6.2). The resulting systems of linear equations are solved using an iterative method which

combines fictitious domain and domain decomposition methods [8].

The far field pattern Fα(α+π) in (5.3) is computed as a surface integral [6] of the computed

near field E(r)
x and its flux. Our particular implementation of the computations is described

in [7]. We need to evaluate the far field pattern Fα(α + π) in (5.3) using the computed near

field E(r)
x . Our particular implementation of the computations is described in [7]. The basic

idea of this procedure is the following. Let Ẽ(r)
x be the harmonic extension of E(r)

x from

Π\ (Ω̄∪Ω1) to R2. We obtain this extension as a byproduct of our solution procedure. Then

at the point η outside Ω̄ ∪ Ω1 the scattered field Ẽ(r)
x is given by

Ẽ(r)
x (η) =

∫

Π

(
∆Ẽ(r)

x (ξ) + k2Ẽ(r)
x (ξ)

)
Φ(η, ξ) dξ, (6.4)

where Φ(η, ξ) is the fundamental solution of the homogeneous Helmholtz equation in R2

given by the Hankel function Φ(η, ξ) =
i

4
H

(1)
0 (k|η − ξ|). By using Green’s formula one can

show that (6.4) is equivalent to

Ẽ(r)
x (η) =

∫

∂Π

(
E(r)

x (σ)
∂Φ(η, σ)

∂n
− ∂E

(r)
x (σ)

∂n
Φ(η, σ)

)
dσ

which is a more traditional expression for Ẽ(r)
x (η) [6]. The far field pattern is obtained by

first discretizing the Helmholtz operator and integral in (6.4) and then taking the limit

Fα(α + π) = lim
r→∞

(√
8πkr e−i(kr+π/4) Ẽ(r)

x (r cos(α + π), r sin(α + π))
)

.

At the discrete level the previous procedure reduces to the evaluation of a sum of exponential

functions. This can be performed easily and fast.
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We have compared numerical results computed using the proposed method and the same

implementation with test cases presented on a workshop in Oxford [18]. The two-dimensional

test cases did not include a coated NACA airfoil, but they did include a similar coated ogive

(the intersection of two non-concentric disks). We computed numerical results for 10 test

cases. All our numerical results and especially the radar cross sections were in very good

agreement with the majority of the results presented in the workshop for each test case.

Because of this, we expect our results to be accurate also for the coated NACA airfoils.

7 Numerical experiments

In our experiments, we minimize the backscatter by a coated NACA0012 airfoil. The length

of the airfoil is one unit without coating and the trailing edge of the perfectly conducting

material is at the origin. We minimize the backscatter for the interrogation angles in the

sector [α0, α1] = [0, π]. We considered two wavelengths, λ = 1/4 and λ = 1/10. The

thickness of the coating is λ/10.

We consider first the lower frequency experiments with a four wavelength long airfoil. The

computational domain is [−1.5, 0.5]× [−0.6, 0.6]. Our discretization has 20 nodes per wave-

length in the ambient medium leading to a triangulation with 22157 nodes and 43158 ele-

ments. A magnified view of the mesh at the trailing edge is shown in Figure 8. We perform

several optimizations with different box constraints for the real and imaginary parts of εr and

µr. The results of these optimizations are given in Table 1. A surface plot of the objective

function is shown in Figure 9. The radar cross sections defined by

RCS(α) = 10 log10

(
1

8π
|Fα(α + π)|2

)

are shown for two optimized materials in Figure 10. Corresponding reflected field inten-

sities for comparison between the no coating layer case and the optimized complex-valued

parameters case of Figure 10 are depicted in Figures 11 and 12 for an angle of interrogation
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Real part Imaginary part
min opt max min opt max J(εr, µr)

εr 1 1 1 0 0 0
µr 1 1 1 0 0 0 324.340
εr 1 3.92 10 0 0 0
µr 1 1 10 0 0 0 318.738
εr 1 6.52 10 0 3.14 10
µr 1 1 1 0 0 0 2.918
εr 1 7.75 10 0 0.80 10
µr 1 5.41 10 0 2.51 10 0.083

Table 1: The results of material parameter optimizations for the case λ = 1/4.

Real part Imaginary part
min opt max min opt max J(εr, µr)

εr 1 1 1 0 0 0
µr 1 1 1 0 0 0 806.036
εr 1 3.84 10 0 0 0
µr 1 1 10 0 0 0 802.695
εr 1 6.58 10 0 3.14 10
µr 1 1 1 0 0 0 2.901
εr 1 4.54 10 0 2.99 10
µr 1 4.99 10 0 2.92 10 0.234

Table 2: The results of material parameter optimizations for the case λ = 1/10.

α = π/4.

The computational domain for the higher frequency experiments with a ten wavelengths

long airfoil is [−1.3, 0.3]× [−0.4, 0.4]. Again our discretization has 20 nodes per wavelength

in the ambient medium leading to a triangulation with 65551 nodes and 128530 elements.

The results of optimizations with different box constraints are given in Table 2. Radar cross

sections for two optimized materials are shown in Figure 13. Corresponding reflected field

intensities for comparison between the no coating layer case and the optimized complex-

valued parameters case of Figure 13 are depicted in Figures 14 and 15 for an angle of

interrogation α = π/4.
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Figure 9: The objective function J(εr, µr) for complex-valued εr and µr = 1 for the case
λ = 1/4.
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Figure 10: The RCS for optimized complex-valued material parameters (εr = 7.75 + 0.80i;
µr = 5.41 + 2.51i; solid line), optimized complex-valued permittivity (εr = 6.52 + 3.14i;
µr = 1; dotted line), and for no coating (εr = 1; µr = 1; dashed line) for the case λ = 1/4.
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Figure 11: The reflected field E(r)
x for no coating (εr = 1; µr = 1) for the case λ = 1/4 and

angle of interrogation α = π/4.

Figure 12: The reflected field E(r)
x for optimized complex-valued material parameters (εr =

7.75 + 0.80i; µr = 5.41 + 2.51i) for the case λ = 1/4 and angle of interrogation α = π/4.
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Figure 13: The RCS for optimized complex-valued material parameters (εr = 4.54 + 2.99i;
µr = 4.99 + 2.92; solid line), optimized complex-valued permittivity (εr = 6.58 + 3.14i;
µr = 1; dotted line), and for no coating (εr = 1; µr = 1; dashed line) for the case λ = 1/10.
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Figure 14: The reflected field E(r)
x for no coating (εr = 1; µr = 1) for the case λ = 1/10 and

angle of interrogation α = π/4.

Figure 15: The reflected field E(r)
x for optimized complex-valued material parameters (εr =

4.54 + 2.99i; µr = 4.99 + 2.92i) for the case λ = 1/10 and angle of interrogation α = π/4.
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8 Summary and conclusions

In summary, the efforts reported on in this paper are an important first step in developing an

attenuation or anti-interrogation technology. We considered first the question of the feasibil-

ity of reduction in reflected electromagnetic waves from a planar layered coating on a perfect

conductor. We demonstrated that even under uncertainty of the interrogating wavelengths

(frequencies), one can achieve reduction of the reflection coefficient through optimizing the

dielectric permittivity in a coating layer. We then considered a Maxwell equation based for-

mulation for a composite ferromagnetic-ferroelectric device built and experimentally tested

by How and Vittoria. We derived the pertinent reflection field equations for time harmonic

interrogating TMx mode plane waves and showed that substantial control of reflected waves

(both magnitude and phase) can be obtained by tuning the magnetic permeability of a ferrite

layer. We next turned to a non-planar geometry, in this case a 2-D airfoil, with a coating

layer wherein both the dielectric permittivity ε and the magnetic permeability µ can be

optimized. Allowing a uniform uncertainty on the interrogating signal angles, we use com-

putational methods from 2-D scattering theory (the Helmholtz equation with Sommerfeld

far field radiation conditions) to verify that significant reduction in the far field reflection

can be obtained by optimal choice of ε and µ.

All of the investigations discussed in this paper were pursued under an active design scenario

and did not allow for online adaptivity of the coating layers. Future investigations of great

interest include the feasibility of combining the formulations in this paper with real time

sensing and adaptive (feedback) control of coatings such as those described above to develop

an active control attenuation capability.
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